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ABSTRACT

The equation
Ut= (u-),2 , x E R, t > 0

u(.,O) = Uo

with m > I models the expansion of a gas or liquid with initial density u0 in a one dimensional
porous medium. Denote by t -- s-±(t) the vertical boundaries of the support of u. Caffarelli
and Friedman have shown that s± E C1 (t±,oo) where t± := sup{t s±(t) = s±(0)) is the

waiting time. Using their result we prove that

s± E COO (t±, o0).

Moreover, we show that the pressure v := u'n- is infinitely differentiable up to the free
boundaries s± after the waiting time. Our proof is based on a priori estimates in weighted
norms which reflect the regularizing effect near the free boundaries.

AMS (MOS) Subject Classifications: 35K55, 35R35
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SIGNIFICANCE AND EXPLANATION

The equation stated in the abstract describes the expansion of a gas in a one dimen-
sional porous medium. While existence of weak solutions can be obtained by standard energy
methods, not much was known about regularity of the solution ner the free boundaries. The
difficulty is that the equation degenerates at the boundary and the hy perbolic' term becomes
dominant.

We show in this report that despite of the degeneracy the free boundary is smooth with
the possible exception of a discontinuity in the derivative at th-"waiting time.Otrr method
is based on energy estimates in weighted norms using some of the ideas in J6, 1. o' ~ . -
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Coo-REGULARITY FOR THE POROUS MEDIUM EQUATION

K. H61lig and H.-O. Kreiss

1. Introduction. We consider the porous medium equation

ut - (u'm).,. - 0, x E R, t > 0,()

U(-, o) = uo

for m > I and continuous positive initial data u0 with connected compact support.

It is well known 13,9,101 that problem (1) has a unique weak solution and that the support
of u(-, t) remains bounded for all t, i.e.

suppu(.,t)--r(t),a(t)].

The curves r, s are Lipschitz continuous [7], but in general not C'. As was first observed by
Aronson [1] r' (and similarly s') can have a jump for t equal to

t' := sup{t: r(t) = r(O)}.

Caffarelli and Friedman 14] proved that a classical solution of problem (1) exists up to the free
boundaries for t > max(t,,t,). By considering the equation for v := u' -i (cf. (2.1) below)
they showed that

(i) vt,v.,vxz are continuous on the set fl, := {(Xt) : r(t) < z < 8(t), t > t'}
(ii) r E C1 (t,, o)

(iii) r'(t) = - "- _v, (r(t), t), t > t'.
The corresponding statement holds for the right free boundary 8. In particular, the functions

in (i) are continuous on the closed support of u if

v0(r(0)) vo((0)) $ 0 (2)

where vo := v(.,O). With the aid of an interesting idea of Gurtin, McCamy and Socolovsky [51
it has been recently shown 16] that r E C' (0, T] if vo is sufficiently smooth, (2) holds and T
is sufficiently small. However, this method does not yield regularity of v.

In this paper we obtain the following optimal regularity result.

Theorem. v E C' (fl,), r E C "(t7 , cc).

Our approach is different from the method in [6]; it is based on the smoothing effect of the
porous medium equation in a neighborhood of the free boundaries. We prove in section 2 the
following a priori estimate.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the
National Science Foundation under Grant No. DMS-8351187.
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Proposition 1. Let i be a solution of (1) for which v E Cl((fl) and assume that

8(0) - r(O) < ,-'
1C< VO(r(O)), IVOl < r-- (3)

IV,(r(O) + Y) - v4(r(o))! < ' (y), Y i,,

where x is a positive constant and A is a smooth function with A(O) = 0, A' > 0. Then, for
any k E N, there exist positive constants 6, T, A such that

ITIk,IT/2,T] + IHk,n(6,T) -< A (4)

where fl(6,T) := {(z,t) : r(t) < z < r(t) + b,T/2 < t < T} and I Ik, denotes the
norm on W k(fl). The constants 6,T,A depend on 1C,X,k; in addition, T,A depend on
IVo V 2k+4,Ir(O)+6/2,'(o)+,I].

In section 3 we show existence of smooth solutions for smooth data.

Proposition 2. If v0 E Cc°(suppvo) and (2) holds, then v E COO(suppv) and r E C""(O,oo).

The Theorem follows from Propositions 1,2 by an approximation argument. Assume that
fa is a solution of problem (1). By the result of Caffarelli and Friedman, (i)-(iii) are valid for
v and F. Let t, < tl < t2. For any r E 1ht,t2], VO := f(.,7) satisfies the assumptions (3)
of Proposition 1 with a constant oc and a modulus of continuity A which depend on V, tl, t2
but not on r. For each (fixed) r we approximate vo by a sequence of smooth functions V~j E
C'(suppvo) for which (3) remains uniformly valid and which converge to v0 in L".(suppvo).
In addition we require that (2) holds for v0,j and

suppvOj = suppvo

Vo,,(z) > 0, r(0) < X < (0), (5)

sup IVOal2k+4,[,(o) 6/2,r(O)+Kj < 00.

Let (v,)1/(m- 1) denote the solutions of (1) with initial data u0 = (VOj)/( A M 1). By Propo-
sition 2, vj E C'O(suppv,). Moreover, the conclusion (4) of Proposition 1 is valid for vj and
the corresponding left free boundary ri, uniformly in j. Passing to the limit j -+ 00 it follows
that

r E W.jr + T/2,r + T

v E WW({(z,t): r(t) < z < r(t) + 6, r + T/2 < t < 7 + T)).

Since k E N, r E ItI,t 2) were arbitrary and in the interior of suppv the regularity is known,
the Theorem follows.

2. A priori estimates. Troughout this section we assume that u is a solution of (1.1)
for which v satisfies the assumptions of Proposition 1. Substituting u = v] /(m' ) in (1.1) we
obtain

vt - mvv,, - nv, = 0 1)
v(.,0) =VO

-2-
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where n 1 /(m - 1). The change of variables

y = x - r(t), V(Z,t) = ,(y,t)

transforms the left free boundary to the vertical axis {y = 01. Since by (iii)

yt = -,'(t) = nw,,(0,t)

the problem for w is
Wt- mwwV - nw2 + nw,(0, .)w = 0

w(.,o) = ,o := vo(- + r(o)).

For the proof of Proposition 1 it is sufficient to show that

IajW"IO,O,6XIT/2,T1 < A', j < 2k. (3)

We need several auxiliary Lemmas.

Lemma 1. f f(y)2 dy f el o y2(- 2f(y)2 + f(y)2) dy.

Proof. By scaling we may assume that b = 1. Then,

f0f ) - 2 f fP

<f(1)2 + 12 ff2 + 2 (f T,

where the first term on the right hand side can be estimated by the standard Sobolev inequality.

Lemma 2. sup0 <,< 6 Ip(Y)21 < c2 fo y2(6-2f(y)2 + f'(y)2) dy.

Proof. Again, by scaling, let 6 = 1. Then,

f f (Y'2
Zf(z)2 = f(1)2  ] f(,) 2 + 2yf(y)f'(y) dy

f (1)2 + 2 f2 + 2 ?1(f'),

and the Lemma follows from Lemma I and the standard Sobolev inequality.
Lemma 3. Let Q(6,T) := [0,6] x [0,TI, OQ := [0,6b x {0} U {} x I0,T] and assume that
p:= minaQ wl > 0. Then

min w. <minw <maxw. <maxv.
OQ -Q Q 8Q

Proof. Set q (t) := (p - e) exp(- t) with 0 < e < p. We differentiate (2) with respect to Y
and subtract ' + a7 = 0. This yields

lw,, - i7t] + j-mwwt,,] + ((-m - 2n)w, + nw,(0,.))w., + [-ctl- 0.

-3-
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Assume that w. (j, t) = r(t) where

i:= suplt: ,,,(.,t) > 17(t)}.

If (j, t) E Q\BQ all terms in square brackets are nonpositive. Since / 0 this is not possible,
i.e. we must have v7 < w, on Q. Letting - 0 proves the first inequality of the Lemma and
the last inequality is proved similarly.

Lemma 4. If 26 < r., A(26) < c/4, then there exist constants T and c3 which depend on
-, b, k, Iv012k+4,i6/2,,] such that

max t. - min tw. <4\(6)
Q(6,T) Q(6,T) -

#c/2 < w1 (y, t) < 2c-', (y,t) E Q(6,T), (4)

Iat cw(6,t)I c3, 2v+M < 2k+3, t <T.

Proof. The maximum principle is valid for problem (1.1), i.e. u- < u implies that u- < u+

and r- > r+ .By (1.3) and our assumption on 6,

VO'(y) > 3rc/4, y - r(0) !< 26.

Using this and (1.3),

vo := max{0, (y - r(O))(r(O) + 26 - y)/2} < vo <

max{O, (y - r(O))(r(O) + 4r.- -)) =: v0.

For the solutions of (1.1) with initial data uo = (vr)1/(m- 1) the assertions (i)-(iii) are valid
with t, = 0. Therefore, by the above comparison principle,

c < v(Yt) < c- 1

- C-It < r(t) - r(O) < -d

if 6/2 < y < 36/2, t < 1. The constant c depends on 6, k. We choose T' < 1 so that

Ir(t) - r(0)l < 6/4, t < T',

which also yields
c < w(y,t) <c- if 36/4 < y !56/4, t <TV.

On the rectangle 136/4, 56/4] x [0, T] the problem (2) is nondegenerate and the last inequality
in (4) follows from parabolic regularity theory if T < T' [81. We set T := min{T', A(6)/c3}.
Then

Iw,(6,t) - w|,(6,t')j < A (6)I|,(t" _,()

C3

which yields the first two inequalities for (i, t) E 3 Q and therefore, in view of Lemma 3, also
for (y, t) E Q.

-4-
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Proof of Proposition 1. Let 0 = T-I < To < ... < Tvk+I = T/2. We prove by induction
on I that for sufficiently small 6,

max ya +1w(Yt) 2 dy + ff y2 a' 2w(y,t) 2 dydt < A"(1), 0 < I < 2k + 1. (5)T!_t<Tjo

The constants A" depend on Pc,i,A,k,T, !vo12k-4,[b/2,x). By Lemma 1,

Ia3W(., t)2 10 ,10 ,61  Cf avW(.,' t)2 + 'IW(., t)2

< c c,6-2 (A"(j - 1) + 2A"(j) + A"(j + 1))
which shows that (5) implies (3).

Since w and w. are bounded, inequality (5) is obviously valid for I = - I. We assume that
(5) holds for I < j and set W1(y,t) a + I w(y,t + T ). Differentiating (2) (j + 1) times
with respect to y and replacing t by t + T,.-I we obtain

(),- ,W_,wj+ 2 - ((2n+ (j+ 1)m)Wo - nWo(O,.))Wj+, - c.W.WwW = 0 (6)

where c, are constants which depend on j. We multiply (6) by t2 yWj and integrate over the
interval [0, 6],

I (1 t2 yW 2 dy) + m t 2 yWW+, dy =

f ty,2

+ mt2 6W- I(6, t)W,+1 (61,)WI(6,)

- M t2(y_). W+,W, (7)

+ ft2y(2n + (j + 1)m)Wo - nWo(0,.)]W, IW,

+ E C, f t0,w,ww,.

The third term on the right hand side of (7) equals

-mt 2(W..(6,t) + 6W0(6t))W,(6,t) 2/2+ mf t2 (Wo + yW,/2)W2.

Proceeding similarly with the fourth term on the right hand side and using (1.3) and (4) we
deduce from (7) that

1(ft2yW)t + '- t22W+ 1

+ / tyWIC4C3+

(8)
- 2 1-Wo.+ (n + (j + I)m/2)Wo - Wo(O, .)1]W

+CS max 0t2yWWuWI
I V !M3!5 I

-5-
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where the constant c4 depends on oc and the constant cs depends on j. We estimate each of
the integrals appearing on the right hand side of (8) seperately. By the definition of W1 and
the induction hypothesis

j0 tyWj(y,t)2 dy <

St'W3 (y ,t)2dy + C' f yOa+'w(y~t + 7,_a)2 dy.

By (4), 1Wo(y, t)- WO(0,t) _ 4A(6) and oc/2 < Wo(O,t) < 21c'. Therefore the term in square
brackets in the second integral on the right hand side of (8) can be estimated by

-C6, if j = 0

noc/4 - c6A(6), if j > 0 (I0)
_ nic/4 - C6 A(6) - max(O, 1 - 3)c6

where ce depends on jr.. Finally we estimate If t2yWWLWl . Set tVWo(y,t) Wo(y,t) -
Wo(O,t). Integrating by parts and using (4) it follows that

IJt2yWW2l <

t 26W1o(6,t)Wj(6,t) 21 + If t 2 wOWi2121 t 2 lIWoWW+lI (11)

4A(/)Co + 8A(+) ft2 Wt + 8A(b) f 2 Vt2 + Il

if 6, t 1< . We have

I f/t2yW,,WWjl !5 E f t2WJ2 + E-'B,,(t) (12)

Pvhere B,,,(t) f t 2 y 2 W2W2,. If v < A < j it follows from Lemma 2 that

B <(t) 2 ( max YW.(yi) 2I) ( YWA (Y ' t) 2 dy)

-2( 1 (.2,+ W2,1) X yW,).

rherefore, using the induction hypothesis,

Bu(t) dt S c2
2 (A"(v - 1) + A"(a)) x A"(ip) < c7A"(j.- 1)2. (13)

-6-

*,-,-, .', ' .-.. -. . . - -,-,- ..- .. .* *.- 4..... ., .- *... .-. .- .-... ..- ... . -. - . .. .-...** * * * *.* .* -.. ,- .. ,.. . .,*



., -3

Combining the estimates (9-12) it follows from (8) that

(t2yW}) + MKt2y2W; <2 2
C + ftW + (-'b(t)

- (nK/4 - c6A(b) - max(O, I - j)c6) J t2W (14)

+C5 (4A (6)C2 + 8,\(b) f i2 WJ + 8A(b) f 2%,2Wj2+ 1)

+ c 5 (EftW? + -<max

where b(t) - f y2 +w(y,t + Tj_1)2 dy. We choose 6,E so that

s c ., ( b) < T O ..

-4
i + crA(6) + 8csA(b) + cs _ n,/4.

Then we obtain from (14) that

ft'yw j), t+ M- Jt2i2w+ <

.
+

+ C6 max(O, 1 - f t2 W2

+ cs-' maxB , (t).

Since, induction hypothesis,

-,-T,_ b(t) dt < A"(j -1)

it follows from (4) and (13) that for any t E [0, T - T_

ft2yWj(y,t)2 dy + !+ w (vr) 2
ry'Wj+(y +)dydT

c -clt+-'A"(j- 1) + 4t3Q - +e-'c 7 A"(j- 1)2 t.

This completes the induction step.

-7-
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3. Existence of smooth solutions. In this section we outline the proof of Proposition
ich justifies the approximation argument in the introduction. Similarly as in section 2
ransform the equation (2.1) to a fixed domain. Let C E C'10, 11 satisfy C' < 0, 0 < <
(y) = 1 for 0 < y < Kc, C(y) = 0 for 2U < y 5 1 and set q(y) := (1 - y). Assuming
out loss that r(O) = 0, s(0) = I the change of variables

y = -VyMrO - 77(y)(8(t)- 1) ():

v(z,t) w(y,t)

5forms the free boundaries to the vertical lines {y = 0} and {y = 1}. One easily verifies
the transformed equation for u, is

wt - (m/x)ww,,, - (n/x)w + (n/x) w,(0,.)w, + (n/x)ntlv(1,.)w,

+ (mxy/x)Ww, = , o < y :_ 1, t > 0, (2)

W(-. 0) =Wo := V0

x(y,t) I - n '(y) wy(Or) dr - nn?'(y)1 wy(1,T) dr.

neighborhood of the left boundary {y = 0} we have x(y) = 1 and equation (2) coincides
equation (2.2). Therefore an analogous a priori estimate is valid.

ma 5. Assume that w E C' (10,1] x I0,T]) and that w'(0)w'(1) $ 0. Then for any

(tx] y(l-y)Otw(y, t)2 dy) + ( y2 (1 ), w(y,t) 2 dydt) < c (3)

e c depends on 1, T, vo.

proof of this Lemma is completely analogous to the proof of Proposition 1. Instead
ultiplying equation (2.6) by t2 yW,, we multiply the corresponding equation obtained by
'entiating (2) by y(I - y)8c-+w(y,t). Because of the weight y(l - y) no boundary terms
ar when the appropriate terms are integrated by parts. The estimates are somewhat more
)licated because of additional terms involving X. But, these complications are merely of
iical nature.
Given the above a priori estimate it is straightforward to prove a corresponding local ex-
ce result via finite difference or finite element approximation. This completes the (outline
e) proof of Proposition 2.

.1°
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20. ABSTRACT -contd.

boundaries of the support of u. Caffarelli and Friedman have shown that

*S+ e c 1(t+.,=) where t : sup~t s 8(t) - s± (0)) is the waiting time.
Using their result we prove that

e 2c (t+,40)m:

Moreover, we show that the pressure v -- u M1is infinitely differentiable

up to the free boundaries s+ after the waiting time. our proof is based

on a priori estimates in weighted norms which reflect the regularizing

effect near the free boundaries.
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